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Spatial Dynamics of Steady Flames 1. Phase Space Structure and the Dynamics of
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The spatial dynamics of steady, one-dimensional premixed H,/O, flames are studied. The emphasis in this
Article is the geometry of the phase space of the dynamical system describing the steady flames. It is shown
that steady flames are described by trajectories on the stable manifolds of saddle fixed points. The saddle
fixed points correspond to equilibrium points of time-dependent chemical-kinetic systems that are adiabatic
and isobaric and whose constant enthalpy matches the asymptotic enthalpy of the flames. The dimensions of
the stable manifolds match the dimensions of the chemical-kinetic systems under most conditions, although
the dynamics on them are different. It is further shown that the stable manifolds have low-dimensional attractive
submanifolds near the saddlepoint. An algorithm for generating trajectories over the spatial domain of these
flames is proposed, and it is used to study individual trajectories and trajectory ensembles, whose collective
behavior suggests that there are low-dimensional submanifolds away from the saddlepoint.

I. Introduction

The accurate modeling of reactive flows requires the descrip-
tion of the interplay of chemistry and transport.' Steady, one-
dimensional flames are among the simplest versions of such
systems, and there are many examples of studies of them.> Of
particular interest in this Article is the approach developed by
Hirschfelder and Curtiss® as well as Dixon-Lewis,* because it
studied steady flames as dynamical systems within a multispe-
cies, multicomponent transport model. This formulation is a
natural starting point for the study of flames within a dynamical-
systems context and is used in this Article and the one that
follows.?

The modeling of chemically reacting flows is computationally
intensive,! and so it has been of general interest to develop
rational methods for reducing the complexity of these systems,
reviewed in several papers.® The development of these methods
continues, with many new ideas and extensions of old ideas
developed in the last several years.”¢ Many of these methods
involve dynamical-systems analysis.?” These methods provide
a natural way of studying complex, homogeneous chemical
kinetics, because the systems they describe are closed and
eventually approach an equilibrium point. When there is a
separation of time scales, the approach to equilibrium occurs
on surfaces of lower dimension, so-called low-dimensional
manifolds. These low-dimensional manifolds are global, non-
linear realizations of the linear manifolds that are well defined
at equilibrium!7?” and are more mathematically rigorous than
steady-state approximations.?®

The purpose of this Article and the one that follows? is to
understand how transport processes affect low-dimensional
manifolds, something that has spurred a good deal of recent
interest.!21415.19-21,23.24.26.29 The introduction of ref 23 provides
arecent review of the literature on reduction including a detailed
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discussion for systems with reaction and transport. The studies
here and in ref 5 are most similar to those in ref 20 because
they focus on the dynamics of steady flames in an extended
space as outlined in refs 3 and 4. This paper and ref 5 extend
that analysis by investigating in detail the dynamics of these
systems in the spatial domain, with the following Article’
including more accurate techniques for generating two-
dimensional manifolds. Two-dimensional manifolds describe
important features of the flame process.

This work, along with ref 20, is an extension to unstable
systems of the methods developed for stable systems. The low-
dimensional manifolds studied here are submanifolds of stable
manifolds of an inherently unstable system.3® Extra care is
necessary in investigating the dynamics of these systems because
of their instability. It is this instability that led to the develop-
ment of computer codes**3! to solve the steady flame problem
as a set of coupled second-order differential equations using
boundary value techniques rather than the dynamical-systems
approach of Hirschfelder—Curtiss.?

Although the dynamical-systems approach is challenging due
to the instability of the systems, it provides a more direct
connection to earlier work on reduction techniques whose bases
are dynamical in nature. For example, steady flames can be
studied as initial-value problems with the dependent variable
being space rather than time as it is in homogeneous chemical
kinetics. Therefore, it is not necessary to be concerned with the
boundary conditions and how they affect the generation of
manifolds, something that has been criticized in the past.?’

The outline of this Article is as follows. Section II gives some
background information, including a brief overview of adiabatic,
isobaric chemical kinetics and an overview of the calculation
of premixed one-dimensional flames with some results from the
Chemkin-II program premix.?!' In section III, the approach of
Hirschfelder—Curtiss® and Dixon-Lewis* is presented and used
to study the flames as dynamical systems. In this section, it is
shown how the flames appear to approach low-dimensional
manifolds in the species phase space, and some comparisons
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are made to the chemical-kinetic case. It is also shown in section
IIT how the boundary value problem (BVP) of ref 31 converges
to the initial value problem (IVP) studied here.

The material developed in sections II and III leads to a
systematic study of the dynamics of the flames, first near the
saddlepoint in section IV, where a detailed analysis of the
asymptotic properties of the flames is studied numerically and
compared to the asymptotic dynamics of the chemical-kinetic
problem. The local analysis of section IV leads to the global
analysis of the dynamics in section V, where trajectories are
studied, and it is shown that the trajectories appear to approach
low-dimensional manifolds. Section VI has further discussion
and conclusions. The Article that follows? takes the information
developed here and extends it to the calculation of low-
dimensional manifolds and compares these manifolds to those
generated from homogeneous chemical kinetics. Subsequent
papers will study aspects of the problems presented here and
in ref 5 from a more fundamental perspective.’?

II. Background

A. Adiabatic Isobaric Chemical Kinetics. One of the
purposes of this Article and the subsequent one’ is to contrast
the behavior of the chemical-kinetic systems without transport
and the spatial dynamics of flames, both studied in phase space.
This subsection provides information concerning the dynamics
of adiabatic, isobaric chemical-kinetic systems that will be
contrasted below with features of the flame system, starting with
section III.A. This information will be most important in the
following Article,’ where direct comparisons are made.

We study here the Hy/O; system as described in ref 33. There
are 10 species in this system: Hy, O,, H, O, OH, HO,, H,0,,
H,0, Ar, and He. With temperature, the total dimension of the
system is 11.

The chemical kinetics are studied under constant pressure
conditions. This fixes the enthalpy as a constant throughout the
reaction, giving rise to adiabatic, isobaric conditions. The
equations of motion for the chemical species are:

dy, W,
The time development of the temperature is:
ar_ 1 .
T PCPZ Wiy (2.1b)

The Y)’s are mass fractions, W;’s are molecular weights, @;’s
are the chemical production rates (law of mass action), p is the
density of the gas mixture, ¢, is the constant pressure heat
capacity, and Ay is the specific enthalpy of a species.

It is assumed that the system obeys the ideal gas law. This
allows the Y;’s to be converted to concentrations and densities.
In addition to enthalpy, there are four constants of motion:

YOz YO YOH YHOz YH202 + YHzo

co=2 —+ +2
© Wo, Wo Won Who, Who, Who
(2.22)
ey =Y, (2.2b)
e =Y. =0 (2.20)

In addition to the O-elemental constant in eq 2.2a, there is a
similar constant for the H-element, but it is redundant with the
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Figure 1. Two trajectories for adiabatic, isobaric chemical-kinetic
systems (dashed lines) are plotted along with the flame of Figure 2
(solid line). The chemical-kinetic systems have the same initial
conditions in the six independent degrees of freedom as the flame has
at 7= 900 K. The trajectory plotted with longer dashed lines has the
same elemental constants and enthalpy as the flame does asymptotically.
The trajectory plotted with shorter dashed lines has the same constants
and enthalpy as the flame does at 900 K at the beginning of its
trajectory.

rest of the constants. So along with the constant enthalpy there
are five constants of motion and the system is six dimensional.
In all calculations presented in this Article, five species are
followed (O, OH, HO,, H,0,, H,0) as well as temperature by
integrating eqs 2.1a and 2.1b, and the other five species (Ha,
0,, H, Ar, He) are calculated using the constants. The constants
are fixed at the beginning of the trajectory.

Two trajectories for the chemical-kinetic systems are propa-
gated and plotted in Figure 1. These trajectories have the same
initial conditions in the six propagated variables, Yo, You, Yro,,
Y1,0,, Yi,0, and 7, but differ in the value of the constants and
the enthalpy as described in the figure caption. As expected,
the final temperature of the higher enthalpy trajectory is greater
than that of the lower enthalpy trajectory.

Figure 1 demonstrates that a typical flame experiences a range
of chemical-kinetic behavior. Although Figure 1 concentrates
on two variables, temperature and the mass fraction of H,O,
any projection shows a range, although the shapes of the curves
and the relative ranges vary with the projections. The rest of
the Article and ref 5 often use the same projection, along with
projections in the O-atom variable. The temperature is chosen
because much of the phase space structure is monotonic in this
variable. The same is generally true for H,O, which is principally
chosen because it is the main final product of the H»/O, system.
The O-atom variables are generally used because the phase space
structure shows curvature in those variables and because the
values of the variables are small, so that they test the accuracy
of the methods used in ref 5. In addition, the difference between
the chemical kinetics and the flames is most pronounced for
the O-atom.

The equilibrium configuration of a chemical-kinetic system
is found from solving the following set of nonlinear algebraic
equations:
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Wkd)k
0= (2.3a)
P
0="Y W,oh (2.3b)
Z Kk k

at fixed values of the constants from eq 2.2a, which means that
only five of the mass fractions and temperature are used to solve
eqgs 2.3a and 2.3b. Associated with the equilibrium point are a
set of eigenvalues and eigenvectors that describe the dynamics
near equilibrium. These are found from diagonalization of the
Jacobian matrix:

oF

m

B 0y

Sk

. 2.4)
where the F,,’s refer to the right-hand sides of eqs 2.1a and
2.1b, and the y;’s refer to the Yi’s and 7. Because of the
constants, the Jacobian matrix is 6 x 6, and because the
equilibrium defined in eqs 2.3a and 2.3b is stable all eigenvalues
are negative. Near equilibrium a chemical-kinetic system is
described by the eigenvalues and eigenvectors of the Jacobian.”’
If the eigenvalue spectrum of the matrix J has large gaps in it,
trajectories will approach equilibrium along the directions of
the eigenvectors whose eigenvalues are least negative, with the
final approach along a single eigenvector, the one whose
eigenvalue is least negative. The low-dimensional manifolds
studied in this paper are the global, nonlinear extension of these
manifolds. Reference 27 has mathematical discussions of these
points. Applications and further, less technical discussions can
be found, for example, in ref 17.

B. Flames. The Chemkin program premix?! calculates the
structure of one-dimensional steady flames. Results are gener-
ated by solving the following version of the steady-state
conservation equations:

90, AW _ (2.52)
&y '
d (AAdT\ d _
a(ga)‘a(z Ghy)=0 (2.5b)
! HO |
0,
2 F H, E
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Figure 2. Species profiles of a flame calculated with the Chemkin
program premix are shown as a function of distance from the burner
in centimeters. The log of the mass fractions are plotted versus this
distance.

Davis and Tomlin

PAV Y,

G.=Y,+ (2.5¢)

Yk, @k p, and Wy were defined for eq 2.1a. The other variables
and constants appearing in eqs 2.5a,b are the Gy’s, the mass
flux fractions, M, the mass flow rate, V,, the diffusion velocity,
and 4, the thermal conductivity. The area, A, is set to one in all
calculations, so the calculations are equivalent to studying fluxes.
These equations are coupled with the continuity equation and
the ideal gas law. The flames are run under constant pressure
conditions. Although there is only a first derivative visible in
eq 2.5a, it is a second-order equation, because the diffusion
velocity, Vi, has a first derivative term in it. The mass flux
fraction describes the fraction of mass flux for a given species.
The diffusion velocity describes the velocity of a species relative
to the overall velocity of the flow. Good descriptions of the
diffusion velocity and mass flux fractions can be found, for
example, in ref 3. The present study uses multicomponent
transport, and the form of the diffusion velocity is complicated.?!
In the formulation described in section III.A, it does not need
to be explicitly calculated. Asymptotically the diffusion veloci-
ties go to zero, and therefore asymptotically the mass fractions
and mass flux fractions are equal.

Premix uses two methods to solve the system in eqs 2.5a—c.
The preferred, default, method is a Newton—Raphson approach
that solves a set of nonlinear equations formed by the spatial
discretization of the derivative terms. Sophisticated adapted
gridding is used.?! Under some conditions, this procedure does
not converge, and a pseudo-time stepping approach to the full
transient problem is undertaken.3!' This latter procedure is more
stable, but considerably more time-consuming.

Premix solves these equations as a boundary value problem.
The mass flux fractions, which are labeled here as G’s above
and as “¢” in the premix documentation,’' are read in at the
burner end. For a typical flame, only Hy, O, Ar, and possibly
He are set to nonzero mass flux fractions at the burner. At large
values of x, the gradients of the mass fractions, as well as the
temperature gradient, are set to zero. Equations 2.5a and 2.5b
are solved with the constraints imposed by eqs 2.2b and 2.2c.
An example from a typical run of the code for the Hy/O, system
is shown in Figure 2. These calculations were run to very large
values of x (30 m), but only the first 10 cm are shown. Because
the premix code does not include radiative loss,! the asymptotic
value of temperature is not room temperature. The calculation
of the flame in Figure 2 was undertaken under conditions of
multicomponent transport and thermal diffusion was ignored
in the calculations.?! It is possible to input different mixtures at
the burner, changing the shapes of the curves in Figure 2,
especially over the first 2 cm, where much of the interesting
transient behavior occurs. No plots like this are presented in
this Article, but Figure 6 shows calculations of different mixtures
at the burner using the premix code, with these plotted in phase
space for specific 2-D and 3-D projections.

The flame of Figure 2 is also plotted in Figure 1 (solid line)
and is compared there to chemical-kinetic trajectories. This
comparison demonstrates the range of chemical-kinetic behavior
in the flame, as well as the range of constants and enthalpy in
the flame. A more complete view of these changes is provided
in Figure 3. The top panel of Figure 3 shows the temperature,
and the bottom three panels track the chemical-kinetic constants
in the flame. The second panel shows the mass fraction of Ar,
the third panel the enthalpy of the mixture, and the bottom panel
the O-elemental constant. The enthalpy changes the most of all
of the quantities that are constant for the chemical kinetics, and
this is a common feature of the flames we have studied.
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Figure 3. The temperature changes along the flame are plotted along
with the quantities that are constant for the adiabatic, isobaric kinetics.
The top panel shows the temperature and panels 2—4 the Ar mass

fraction, the enthalpy of the mixture, and the elemental O constant (eq
2.2a).

Although the chemical-kinetic constants are not strictly con-
served in the flame, Figure 3 suggests that the strongest
difference between the flame and chemical-kinetic systems
occurs near 1 cm. Although the information contained in Figure
3 is not used in this Article, it is important in the following
Article,” where more detailed comparisons are made between
the dynamics of the flames and chemical-kinetic systems.

III. Steady Flames as Dynamical Systems

A. Hirschfelder—Curtiss/Dixon-Lewis Formulation. The
work of Hirschfelder and Curtiss® and Dixon-Lewis* provides
an alternative formulation to eqs 2.5a—2.5c. The flame is cast
as a dynamical system and is solved as an initial value problem.
In the Hirschfelder—Curtiss/Dixon-Lewis approach, the follow-
ing set of equations is solved:

dG, W,
L . (3.1a)
de gy
XW,G, ~X;W,G))
— —Z L L (3.1b)
W WDy
H
dT MZGh =k 3.1¢)

W,

All of the variables in these equations have been defined above,
except for the mixture-averaged asymptotic value of the
enthalpy, e, and Xi, which is mole fraction. In eq 3.1c, Hy
refers to the standard enthalpy of formation. There are two other
equations in addition to eqs 3.1a—c that need to be used to fully
define the problem, and these are the continuity equation
(conservation of mass) and an equation of state. Typically the
ideal gas law is used for the equation of state, and that is what
is used in Premix and in this Article. It is again assumed that
the flow is low speed and that pressure is constant. In the
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discussion that follows, the following shorthand is used to refer
to all of the differential equations, and once again, as in eq 2.4,
the Jacobian of the system:

dy,,

< =Fu (3.1d)
JF,

mk 3_)’/( (3.16)

where the y’s refer to the G’s, X’s, and 7. As described in eqs
3.1a,b, an Hy/O, steady flame is a dynamical system whose
dimension is 21.

The flame system possesses constants of motion that are:

Go Gy Goy GHOZ GH202 . GHzo
Wo, Wo Wou  Who, Wuo, Wipo

5

(3.2a)
d,,=G,, (3.2b)
dyy. =Gy =0 (3.2¢)
z X, =1 (3.2d)

k
Z G, =1 (3.2¢)

k

Once again, there is a constant associated with the H-element,
similar to eq 3.2a, but it is redundant with the constants given.
The enthalpy of the mixture is no longer constant, as it was for
chemical-kinetic systems in eqs 2.1a and 2.2a. The constant
enthalpy has been replaced by an asymptotic enthalpy in eq
3.1c. The mole fractions in eq 3.1b can be converted to
concentrations and densities via the ideal gas law and the
temperature defined in eq 3.1c. Because there are five constants,
the final dimension of the system is 16. It should be noted that
the constants defined in eq 3.2a have the same form as those in
eq 2.2a, but the ¢’s in eq 2.2a are not constant in the flame.
Only under conditions where the diffusion velocities are zero
are the ¢’s constant in the flame, which is what happens
asymptotically.

The dynamical system defined in eqs 3.1a—c is unstable. The
fixed point defined by the conditions:

W
0=—* (3.3a)

M
WG, —XW,G) T
__z WW.D, (3.35)

(2 Gy~ h,,) (3.3¢)

is a saddlepoint. Equation 3.3a defines a chemical equilibrium,
as it is a solution of eq 2.3a. However, the diffusion equations
(eq 3.3b) make the fixed point unstable, as can be observed
numerically by generating the eigenvalues of the Jacobian in
eq 3.1le. Although the dynamical system is unstable, associated
with a saddle fixed point is a stable manifold. The stable
manifold of the fixed point is defined:?”-3

W(yo) : = {y ORllim ¢'(y) = yo} (34

In eq 3.4, yy refers to the fixed point. In words, eq 3.4 states
that the stable manifold (W®) is the set of all vectors that
approach the fixed point as ¢ or x (the independent variable)
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goes to infinity. For adiabatic, isobaric chemical kinetics, all
trajectories in the physical space go to the equilibrium point,
and thus the stable manifold has the same dimension as the
physical space, six. The physical space is the portion of phase
space where all of the variables have physical values. For
example, all concentrations are greater than zero in the physical
space. It is also possible for such systems to have stable
manifolds of this dimension that extend beyond the physical
space, and ref 17 has examples. For unstable systems, such as
the flames studied here, the stable manifold is a subset of the
available space, and its dimension will be calculated below for
several systems.

Equations 3.1a—3.4 define the conditions under which there
are steady flames. Equations 3.1a—c describe the dynamics.
Equations 3.2a—c describe constraints on the system, and eqs
3.3a—3.4 describe the conditions under which the system is
stable. Equations 3.1a—3.4 thus show that steady flames are
trajectories on the stable manifold of a saddle fixed point.

Equations 3.1a—c describe a dynamical system with physical
and unphysical solutions, like many differential equations. The
physical solutions are asymptotically stable, and the unphysical
ones blow up. The last point in the previous paragraph describes
the geometrical realization of this feature of the differential
equations, and eq 3.4 puts it in mathematical terms.

We end the discussion of the dynamical system defined in
eqs 3.1a—3.4 by generating a similar set of equations for a
simpler system as a way of explaining the coordinate system.
The equations result from adding advection to one of the systems
studied in ref 24 (a), which is revisited in section IIL.D. In
addition, the diffusivity is assumed to have a spatial dependence,
something which is true in the flame system. Starting with the
following advection-diffusion-reaction evolution equation for
one of the species in an isomerization reaction:

3y AT, ( 8y1)
E = —k1y1+ k2y2 + Ua + gc Da (3.58.)
the steady state equation is defined:
dy, df,
0= —k1y1+ k2y2 + Ua + d_x Da (3.5b)

where v is a constant flow velocity. Moving the derivative terms
to the left-hand side and manipulating eq 3.5b gives the
following:

d Ddy 1
a()ﬁ + ;al) = ;(klyl_ kyy,) (3.5¢)
dG, Ddy,
o ko T k). G =y (3.5d)
dy
El = lﬂ)(G1 —y) (3.5¢)

In addition, the diffusion velocity can be defined in a straight-
forward manner:

y,=p 3.5
Equations 3.5d—3.5e describe the dynamics for one species,
and there is another set for the other species.

Equations 3.5d and 3.5e are analogous to eqs 3.1a and 3.1b.
They define two of four equations necessary to study a steady
advection-diffusion-reaction equation for an isomerization reac-
tion as a dynamical system. It is also possible to find the
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Figure 4. The flame of Figures 2 and 3 is plotted out to large spatial
extent and in a space of the species and temperature. A two-dimensional
projection is shown in the top panel, and a three-dimensional projection
is shown in the bottom panel.

saddlepoint of this system and confirm that it is in fact a
saddlepoint. The saddlepoint is defined by:

1
0= ;(k1Y1 —kyy,) (3.5g)

0="1(G—y) (3.5h)

Under most conditions, the eigenvalues of the Jacobian for the
full four-dimensional system will have two negative eigenvalues
and two positive eigenvalues at this point, indicating that it is
a saddlepoint. Equation 3.5h indicates that at the saddlepoint
the G’s and y’s are equal. As noted above, for the flame system
the G’s and Y’s (mass fractions in that case) are equal at the
saddlepoint.

In preparation for the dynamical system analysis described
in the rest of the Article and in ref 5 where low-dimensional
manifolds are investigated, it is useful to first study the dynamics
in phase space as it moves toward the saddlepoint. The results
of such a calculation for the Premix program are presented in
Figure 4 where the calculation was carried out to 30 m. The
top panel shows a two-dimensional projection onto the space
of the temperature and H,O mass fraction, and the bottom panel
of Figure 4 shows a three-dimensional projection using tem-
perature and the mass flux fractions of H,O and O-atom. This
panel demonstrates that there are sudden changes in gradient
in a couple of places. Such changes are generally indicative of
low-dimensional manifolds, whose presence is demonstrated in
ref 5.

B. Dynamics of a Chemical-Kinetic System: Approach to
Low-Dimensional Manifolds. A common feature of chemical-
kinetic systems is that they approach equilibrium via low-
dimensional manifolds due to a separation of time scales. This
behavior is well-known for the Hy/O, system,'” and a random
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Figure 5. A set of 400 randomly selected trajectories were run in a
chemical-kinetic system and plotted as a two-dimensional projection
in the top panel and a three-dimensional projection in the bottom. The
equilibrium point is plotted as a large dot. The top panel shows strong
evidence for a one-dimensional manifold, and the bottom panel shows
evidence for a two-dimensional manifold.

sample of trajectories for the chemical-kinetic system of section
II.A shows such behavior. The top panel of Figure 5 shows a
two-dimensional projection of a random sample of 400 trajec-
tories. These are propagated for a system with an enthalpy equal
to the asymptotic enthalpy of the flame generated with the
method of section V, —1.755 x 108 ergs/g. In addition, the two
elemental constants are set to the asymptotic elemental constants
of the same flame (the ¢’s in eqs 2.2a and 2.2b), co = 0.0063,
car = 0.88. It is clear from this panel that trajectories approach
a one-dimensional manifold at 7 = 1200 K and Yu,0 > 0.1.

The bottom panel extends the analysis by showing a three-
dimensional projection. It appears that the sample of trajectories
approaches a two-dimensional surface for 7 > 850 K, Yu,0 >
0.06, and Yo small. Reference 5 will present pictures of the
one- and two-dimensional manifolds.

As noted above in the discussion of Figure 1, trajectory plots
presented in this Article and in ref 5 are usually drawn with
projections involving the temperature, H>O, and O-atom vari-
ables, for reasons stated there. Because of the monotone behavior
of the temperature and the near-monotone behavior of the H,O
variables (mass fractions, mole fractions, or mass flux fractions),
it is more straightforward to observe the collapse of trajectories
to manifolds in plots such as the ones shown in Figure 5 and
later plots in this Article and ref 5.

C. Flame Dynamics: Approach to Low-Dimensional Mani-
folds. To demonstrate that flames from the Chemkin program
Premix have a behavior similar to that of chemical-kinetic
systems, several flames were generated from the code and
presented in Figure 6. The initial values of the species at the
burner were adjusted so that the flames would have the same
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Figure 6. A series of 16 flames were generated from the Chemkin
program Premix and plotted with a two-dimensional projection in the
top panel and a three-dimensional projection in the bottom panel. These
calculations were chosen to have approximately the same asymptote.
The top panel makes it clear that there is a one-dimensional manifold
for the flame, and the bottom panel suggests there is a two-dimensional
manifold, but the data are rather sparse. Further evidence of the
dimensionality is provided in the panel by an estimate of the
dimensionality: n = 1 (blue), n = 2 (red), n = 3 (green), n = 4 (black),
and n =5 (yellow).

035 600 900

spatial asymptotes. This procedure was generally successful,
but the line is extra thick because the asymptotes are slightly
different.

In the top panel of Figure 6, the results from 16 flame
calculations are plotted in a manner similar to that of the
chemical-kinetic system in the top panel of Figure 5. These are
plotted with the mole fractions, the X’s as the variables, as it is
the standard set of variables outputed from premix. As will be
evident in subsequent portions of the Article, the picture outlined
in Figure 6 is apparent in any reasonable set of coordinates,
although generally the phase space plots presented in this Article
use the mass fractions, the Y;’s, for chemical-kinetic systems
and Gy’s for the flame systems. These sets of coordinates are
preferred, because the chemical-kinetic constants in eq 2.2a are
defined for the Y’s and the flame constants in eq 3.2a are defined
for the G’s.

As in Figure 5, Figure 6 demonstrates that there appears to
be a one-dimensional manifold at temperatures above ap-
proximately 1200 K. The situation is more ambiguous in the
bottom panel, where a three-dimensional projection is plotted.
Based on the behavior of the trajectories, it appears that a two-
dimensional manifold is approached, but the data are sparse.

Further evidence for the dimensionality of the surface on
which the flame trajectories move is provided by dimension
estimates calculated with the technique of refs 35. The dimen-
sion is color coded on the figure, as noted in the caption. The
blue portions of the trajectories indicate that the dimension
estimate is 1, and the red portions indicate that the dimension



7774 J. Phys. Chem. A, Vol. 112, No. 34, 2008

estimate is 2. This is consistent with the more qualitative analysis
provided by the changes of gradients in the trajectories.

In subsequent sections of the Article, we will develop the
methodology to use the Hirschfelder—Curtiss approach to
generate a large number of trajectories for the flame system
with the same asymptotes. This will lead to evidence that there
are two-dimensional manifolds, which will further be confirmed
by finding them in ref 5.

D. Phase Space Structure: Initial Value Problem versus
Boundary Value Problem. To understand the phase space
structure of the flame, a simpler system is used to demonstrate
the general phase space structure of an unstable system. In ref
20 a somewhat more complicated system was studied to
establish the nature of the eigenvalue spectrum and the manifolds
of the system, which was also linear, like the present case.
However, a detailed phase space analysis was not included there.
Further analysis of such simple systems, including nonlinear
systems, will be presented in a future publication.

Consider the isomerization problem:

Assuming for convenience that the diffusion constants are equal,
the following reaction-diffusion system is defined:

2,

dy 9y
— =kt ks T3 ; (3.7a)

X

9y, 32)’2
E =k1y]— kz)’z"*'Dﬁ (3.7b)

where y; and y, are densities or concentrations of A and B,
respectively, and D is the diffusion constant. The steady
solutions of this system are found from:

2

dy 1
v Pk k) (3.8a)
&y,
g = B(_k1y1+ kyy,) (3.8b)
The following linear combination
Py +y) @
ot _do_, (39)
dx dx
means that
z=dx+c (3.10a)

We are interested in those solutions that are stable and thus
restrict to those where:

z=c (3.10b)
So eq 3.8a can be converted to the following system:
d2}’1 k kyc
EZByI_F’ k=k+k, (3.11)

This second-order differential equation can be converted to two
first-order equations:

dy,

a =uy (312&)
du, kyc
& DD (3.120)

The system has a fixed point at the equilibrium condition:

Davis and Tomlin

k,c
v =% (3.132)
U, =0 (3.13b)

The solutions of eqs 3.12a and 3.12b are:

1 D kyc L
A =§[(ylo+\/%“m—7)e D'+
D kyc 7\/2,5 kyc
(ylo - \/%uw - 7)6 D ] + 7 (3.14a)

1 k k koc k
ulzil(\/gylo—i‘ulo—\/gT)e p +
k Kkac\ _ \/Z
(—\/gylo—i-ulo—i- \/57)6 D ] (3.14b)

The only asymptotically stable solutions of eqs 3.13a and 3.13b

are ones where:
k k kyc
Ml = — \/:yl + J:T

(The positive exponentials have zero component.) Therefore,
eq 3.15 defines the stable manifold of the saddle fixed point of
eqs 3.13a and 3.13b. The unstable manifold (the most unstable

direction) is:
k k koc

(The negative exponentials have zero component.)

Equations 3.13a and 3.13b can be used to develop the phase
space structure of the system. An alternative way of analyzing
the structure is based on recognizing the system is Hamiltonian,
with the following Hamiltonian:

(3.15)

(3.16)

_ 1 2 k 2 kZC
H=3uy = 5o+
The unstable and stable manifolds are level curves of the system

with the following value:

(3.17)

E k%c2
" 2kD

These equations can now be used to understand the phase
space structure of the system and the role of boundary
conditions. Figure 7 shows a series of level curves for the
reaction diffusion system in eqs 3.7a and 3.7b with the following
set of parameters: k; = 2.0, k, = 1.0, and D = 0.5, with the
constant in eq 3.10b set to 2.0. The stable and unstable manifolds
are shown as a set of thick black lines that intersect at the
saddlepoint, shown as a solid round dot, and form a separatrix
dividing motion that has a turning point (#; = 0) and motion
that does not have a turning point. There are 14 additional level
curves; 6 have energies above the separatrix energy and 8 have
energies below the separatrix energy.

The following set of boundary conditions will be studied for
the reaction—diffusion system:

(3.18)

Yux=0)=yp, u;(x=x)=0 (3.19)

These were chosen to be similar to those in the Premix code
for flames. The “1” refers to the left boundary and “r” refers to
the right boundary. This boundary condition restricts allowed
steady distributions for the reaction—diffusion system to those
that have level curves inside or on the separatrix. The vertical
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Figure 7. The phase space structure of the steady states of the
isomerization reaction—diffusion system is shown here. Several different
values of the level curves are shown. The arrows on some of the level
curves indicate the direction of the flow. A complete discussion of this
figure is in the text.

lines in Figure 7 are at y; = 0.1 and y; = 1.2. To satisfy the
boundary conditions for these requires that the level curves cross
the u; = O line at x;. There are three level curves shown in
Figure 7 that can satisfy the conditions for y; = 0.1 and two for
y1 = 1.2. The solid squares drawn on the u#; = 0 line show the
points at which these curves would need to cross at x = xy to
satisfy the right boundary condition.

To impose the second condition in eq 3.19, the left-hand side
of eq 3.14b is set to zero, and the following condition results:

\/? \/?
_ k ke b —e A b
o= 7A/ Vo™ 1 P P

e\/;""+ef\/g’“

In the limit of large x¢, the stable manifold is recovered:

. k k ke
1 =— /Sy .=
i g ==/t A 5

Therefore, the boundary value problem becomes strictly an
initial value problem when the spatial limit is taken to infinity.

The rest of the Article studies the initial value problem
presented in section III.A, but it is instructive to first demonstrate
how the boundary value problem approaches the initial value
problem. The top panel of Figure 8 shows three level curves
(dotted lines) near the energy of the stable manifold (solid lines)
for the isomerization reaction—diffusion system and is an
expansion of part of Figure 7. This panel makes it clear that
the solution of the boundary value problem approaches the
solution of the initial value problem as the boundary is taken
to larger values. The bottom panel of Figure 8 shows similar
results for the steady-flame case. There are four steady flames
plotted in the bottom panel as calculated from the Premix code.
The solid curve was generated out to x = 1000 cm and is
essentially a two-dimensional projection of the stable manifold.
The other curves were generated from the code out to the
following boundaries, 10, 50, and 100 cm, and it is clear how
they approach the stable manifold and that they differ somewhat
from the asymptotic result.

Figure 8 demonstrates that there are small differences between
the boundary-value solutions and the initial-value solutions that

(3.20)
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Figure 8. The top panel shows an expanded view of part of Figure 7,
showing three level curves (dotted lines) near the separatrix (solid line).
The bottom panel shows results for four flames with the boundary-
value approach. The dotted lines show flames generated out to 10, 50,
and 100 cm. The solid line shows a flame out to 1000 cm, which is
essentially the stable manifold for the saddlepoint (solid dot) in the
vicinity of the saddlepoint.

are imposed by the boundary conditions. To make accurate
comparisons between the flame dynamics and the chemical
kinetics without transport, it is essential to avoid differences
imposed by the boundary conditions, and such comparisons are
presented in the following Article.’ Figure 8 further demonstrates
that flames generated from a boundary-value approach are
described by trajectories that do not lie on the stable manifold
of a fixed point. Therefore, these trajectories are not directly
analogous to trajectories of the chemical-kinetic system whose
motion does lie on a stable manifold. On the other hand, flame
trajectories generated from an initial-value approach do lie on
the stable manifold, and comparisons in phase space between
the spatial dynamics of flames and the temporal dynamics
of the corresponding chemical-kinetic system are more ap-
propriate within the initial-value approach.

IV. Near Equilibrium Dynamics

A. Phase Space Structure. In section III.D the phase space
structure of the reaction—diffusion system could be generated
analytically over the whole phase space. It is not possible to do
this globally for the flame system, but it is possible to use the
Jacobian of the flame system of eq 3.1a to analyze the phase
space structure of the flame near the saddlepoint. The purpose
of this investigation is to demonstrate the strong instability of
the motion away from the stable manifold.

The flame system studied is one that matches the flame of
the Premix code that was studied in Figure 2. The calculation
of this trajectory is described in section V. It has do = 6.3 x
1073, dar = 0.88 (eq 3.2a), and h o = —1.755 x 10® ergs/g.
The eigenvalue spectrum of this system at the saddlepoint is:
—69.2, —27.1, —22.7, —19.0, —2.3, —0.0061, 0.77, 1.16, 1.20,
3.0,3.2,6.3,23.1,25.2,29.7, and 73.4. Because the eigenvalue
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Figure 9. The stable (straight thick, dark line) and unstable manifolds
(curved thick line) of the linear system are plotted. These emanate from
the saddle point (dot). Twelve trajectories (dotted lines) starting near
the stable manifold are also plotted. The arrows drawn on some of the
trajectories and on the manifolds indicate the direction of the flow.
The text describes the figure in more detail.

spectrum has positive eigenvalues, it is unstable, and because
the eigenvalue sum is greater than zero, the system is a
repellor.3® This differs from the isomerization example in the
previous section, which was area preserving. To demonstrate
the structure of this system and its inherent instability, the
subspace of the two eigenvectors associated with the lowest
positive eigenvalue (0.77) and least negative eigenvalue (—0.0061)
is studied.

The phase space structure of the linear system defined by
the eigenvector subspace is shown in Figure 9. The stable
manifold is the thick dark line that is nearly linear, and the
unstable manifold is the dark curve (the system is linear in the
X’s and G’s, but the transformation from the X’s to Y’s is
nonlinear). There are 12 trajectories propagated in the linear
system formed from the eigenvectors and their eigenvalues.
They are plotted as dashed curves, and six are started to the
left of the saddlepoint (the large solid dot) and six to the right.

The trajectories on the left are started very close to the stable
manifold with the starting position at the open circle, with small
displacements away from the stable eigenvector along the
unstable eigenvector. The ratios of the unstable to stable
directions in the figure (from left to right) are: &1 x 107>, &1
x 10729, and 41 x 10730, The trajectories on the right are
started at the open circle and are displaced along the unstable
direction (from right to left): &1 x 107, &1 x 1072, and +1
x 107%. These trajectories were chosen to demonstrate the
behavior of the system in the vicinity of the saddlepoint, and
the displacements along the unstable manifolds had to be
extremely small for a trajectory to get past half the distance to
the saddlepoint from the initial value before diverging, with only
the displacements of 1 x 107° on either side of the
saddlepoint moving more than half the distance. The sizes of
these displacements along the unstable direction demonstrate
the strong instability of the system, which can be anticipated
by the large ratio in the magnitude of the two eigenvalues of
the eigenvector subspace studied (0.77 vs —0.0061).

The degree of instability in Figure 9 demonstrates that it is
very hard to use standard integration techniques to generate
trajectories for the flame system. Any small displacement from

Davis and Tomlin

b d(,=| 0.00_|§: \I'_\,;Io.gsl
00 [ 6
kel 1%
200 £ 1 2
=1 0

%2
38888
OM&;C\

1 T 1 L

58 .1 5.5 9
so0 J0=0017.Y,, =073
400 FT
o 300 4
g 200 =
2
100
0 0
Fw) 9 B8 7Y
H (10° ergs/g)

Figure 10. Eigenvalue ratios for three flame systems as a function of
asymptotic enthalpy of the mixture are presented for rich flames (top),
stoichiometric flames (middle), and lean flames (bottom). Solid lines
show a, and dashed lines show o,. The dimension of the stable
manifold near the saddle is shown in all panels as a series of dots. Its
value is almost always 6, the dimension of the chemical-kinetic space.

the stable manifold will cause the system to move rapidly away
from the stable manifold. It was this instability that led to the
development of computer codes based on boundary value
techniques.3%3! Section V presents an alternative means for
generating trajectories.

B. The Jacobian and Linear Low-Dimensional Manifolds:
Changes with Enthalpy. The Jacobian of the flame system of
eq 3.1a can be used to further analyze the dynamics of the
system near the saddlepoint. Here, we are interested only in
the stable manifold. The local attractivity of the one- and two-
dimensional submanifolds on the stable manifold is controlled
by the following quantities near equilibrium:

-

o =— (4.1a)
A
e

o,=— (4.1b)
j'2

EL)

where the superscript “—” indicates that only the negative
eigenvalues are studied, and the subscripts “1”, “2”, and “3”
refer to the magnitude of the eigenvalues, with “1” referring to
the least negative eigenvalue. When a is large, there is a
significant separation of spatial scales for the largest spatial
scales and the one-dimensional submanifold of the stable
manifold is highly attractive near the saddlepoint. When . is
large, there is a strong separation of spatial scales for the second
longest spatial scales and the two-dimensional submanifold of
the stable manifold is attractive near the saddlepoint.

Figure 10 investigates the ratios defined in eqs 4.1a and 4.1b
as a function of the asymptotic enthalpy, %.. Three different
values of the constants do and da;, as defined in eq 3.2a, are
investigated in Figure 10. The panels show o as solid lines
and o, as dashed lines. The three cases in Figure 10 can be
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Figure 11. A further analysis of the systems in Figure 10 is presented.
The thick red line shows the asymptotic temperature of the systems
(right axes). The solid black line shows the ratio of the H-atom mass
flux fraction versus H>O mass flux fraction, and the dotted line shows
the analogous quantity for the O-atom.

classified via their stoichiometry as rich flames (top panel),
stoichiometric flames (middle), and lean flames (bottom). The
panels in Figure 10 also show the dimension of the stable
manifold, n, as a series of dots, using the right-hand axis. This
dimension is equal to the number of negative eigenvalues at
the saddlepoint. The panels demonstrate that under almost all
conditions the dimension of the manifold is 6, which is the same
as the dimension of the chemical-kinetic system of section II.A.
Only for four systems is ng less than 6, and these are flames
that experience small temperature rises, reaching asymptotic
temperatures of only 900 K (see the bottom panel of Figure 11
for the temperatures). In the rest of this Article, the only systems
studied are those whose stable manifolds have dimension 6 and
match the dimension of the equivalent chemical kinetic system.

Figure 10 demonstrates that for stoichiometric flames in the
middle panel the one-dimensional manifolds are very attractive
for all enthalpies, because @, is large. The variations of @, in
the top and bottom panels demonstrate that for the rich and
lean cases, one-dimensional manifolds are highly attractive at
higher enthalpies, but not necessarily for the lowest enthalpies.
For the lean case in the bottom panel, the situation is very
complicated at low enthalpies. There are ranges where the one-
dimensional manifolds are very attractive and ranges where they
are not.

All of the plots in Figure 10 demonstrate that at high enthalpy,
two-dimensional manifolds become less attractive as enthalpy
gets higher, because o, gets smaller. The top two panels
demonstrate that at low enthalpy the two-dimensional manifolds
are attractive when the enthalpy is less than zero, with a,
generally greater than 10. Once again, the bottom panel shows
that when enthalpy is less than zero the situation gets much
more complicated. There are ranges of enthalpy where o, gets
as high as 100.

Figure 10 also demonstrates that there are ranges of enthalpy
where both one- and two-dimensional manifolds are attractive,
particularly near H = 0. These cases fit the generic relaxation
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Figure 12. The top panels show contours of the temperature as a
function of stoichiometry and enthalpy for the chemical-kinetic systems.
The middle panel shows the eigenvalue ratio as defined in eq 4.1a,
and the bottom panel shows the eigenvalue ratio defined in eq 4.1b.
The bottom two panels show the degree of attractivity of the one- and
two-dimensional manifolds. The text has further details.

view of Roussel,!” where there are strongly attractive one- and
two-dimensional manifolds.

The complexity observed at low enthalpy in the bottom panel
and subsequent plots, most notably in the top panel of Figure
11, the bottom panel of Figure 12, and the middle panel of
Figure 13, is interesting. We examined this further and came
to the conclusion that the complexity is real and not noise from
poor contour resolution or inaccuracy in calculating finite-
difference derivatives in generating Jacobian matrices. This
phenomenon would be interesting to study in more detail, but
we have not done that yet.

Figure 11 extends the analysis of Figure 10. This figure
demonstrates the type of analysis that can be done for the flame
once the one-dimensional manifold is resolved. The analysis
here is done near the saddlepoint as a demonstration of the utility
of a geometric analysis of the dynamics of the flame. The solid
red line shows the temperature at the saddlepoint (the asymptotic
temperature), which, as expected, increases with increasing
enthalpy. The four dots on the bottom panel show the four
systems in the bottom panel of Figure 10 that have stable
manifolds whose dimensions are not 6, and it indicates that these
are systems that do not reach a very high temperature. One
puzzling aspect of this figure is that these systems do not seem
very different from ones near them, but still differ in the
dimension of the manifolds. This deserves further attention, but
is not investigated any further in this Article.

The rest of the information on Figure 11 refers to the
eigenvectors of the two least negative eigenvalues. The solid
black lines in the plots show the ratio of the projection of H-atom
mass flux fraction of the linear one-dimensional manifold onto
the H,O mass flux fraction and the dashed lines the same ratio
for the O-atom. The changes in the one-dimensional manifold
thus can be tracked as a function of the stoichiometry and
enthalpy. For the rich flame at the top, there is little H-atom
produced along the low-dimensional manifold for all enthalpies
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Figure 13. The top two panels describe the eigenvalue ratios for
the flame system and are analogous to the bottom two panels of Figure
12. The bottom panel shows the dimension of the stable manifold (the
number of negative eigenvalues of the Jacobian), and it is 6 over the
range of enthalpies and stoichiometries studied in the figure. This is
the same as the dimensions of the chemical-kinetic systems.

and little O-atom produced for high enthalpies. However, at
low enthalpies there is a complicated interplay between the H,O
and O-atom productions along the one-dimensional manifolds.
For the stoichiometric flames, there are significant amounts of
O-atom produced along the one-dimensional manifold as
compared to H,O, with nearly equal amounts at low enthalpies.
There is little H-atom produced versus H,O for the stoichio-
metric flame at low enthalpies, but a significant fraction at high
enthalpies. For the lean flame on the bottom panel, there is
almost no O-atom production along the one-dimensional
manifold for all enthalpies, but significant amounts of H-atom
at high enthalpy.

C. Changes with Enthalpy and Stoichiometry. A broader
view of the changes of the manifolds near the equilibria of the
chemical-kinetic systems and the saddlepoints of the flame
systems is provided in this subsection. Figure 12 presents results
for a series of calculations on the chemical-kinetic systems near
their equilibrium points, and Figure 13 has a similar series near
the saddlepoints of the flame systems. In these calculations, the
constants of motion are set by the following conditions:

X,,=0.63 (4.22)

=2 (4.2b)

fu, =1 f; 70 =log() (4.20)

Xy, =fH2(1 —Xu) (4.2d)

Xo,=1=Xu = Xy, (4.2¢)
2Y,,

co=do= Woz_ (4.2f)

Car=dp =Yy (4.2g)

Davis and Tomlin

hy, = h=h, (4.2h)

where h; is the input value of %, the constant enthalpy of the
chemical kinetic system, &, refers to the asymptotic enthalpy
of the flame, and y, is an input parameter describing the
stoichiometry. The mass fractions in eqs 4.2f and 4.2g are
calculated in the usual manner. For example, the mass fraction
of O, is calculated from the mole fractions with:

Y. = X02W02
0, Xo,Wo, T Xy Wy + Xo Wy,

(4.3)

Equations 4.2b and 4.2c indicate that when the flame/reaction
system is stoichiometric at the saddle/equilibrium, y; = 1 and
o=0.

The top panel of Figure 12 shows contours of the temperature
as a function of & and the stoichiometric parameter o defined
in eqs 4.2b and 4.2c. Temperature contours are from 800 to
2400 K in 200 K increments. The maximum contour at 2400 K
is plotted as a thick solid line, and the two minimum contours
at 800 and 1000 K are drawn with short and long dashes. The
top panel demonstrates that the temperature at equilibrium/saddle
is highest under stoichiometric conditions and when enthalpy
is highest, an unsurprising result.

The bottom two panels of Figure 12 show attractiveness of
the one- and two-dimensional manifolds with the parameters
o and ; defined in eqs 4.1a and 4.1b. There are nine contours
in the middle panel ranging from a minimum value of 100.0 to
a maximum of 1700.0 in intervals of 200.0. The highest (upper
right) and lowest (lower right and left) are plotted with thick
solid lines and the value at 500.0 as dashed lines. The rest of
the contours are plotted with thinner solid lines. These contours
indicate that the surface defined in the middle panel consists of
two ridges peaking at approximately (0,H) = (—0.6,7 x 10%)
and (0.6,7 x 10°) and moving down diagonally from there, with
the higher ridge being the latter one.

The bottom panel has nine unevenly spaced contours to
describe o, with the following values: 2.0, 3.0, 4.0, 15.0, 50.0,
100.0, 200.0, 300.0, 400.0. The first three sets of contours are
plotted as thinner dashed lines, the next three with thicker dashed
lines, and the highest three as solid lines. The bottom panel
shows that the two-dimensional manifolds under lean conditions
are not very attractive, with a, mostly near 2.0—4.0. Only under
rich conditions do the two-dimensional manifolds become very
attractive, and this does not depend in any significant manner
on enthalpy.

Figure 13 describes the eigenvalue ratios near the saddlepoints
for the flame systems. As noted above, the low-dimensional
manifolds are submanifolds of a stable manifold of dimension
6 in all cases studied. The contour plots are over the same range
of enthalpies and stoichiometry as those of Figure 12. The
enthalpy in Figure 13 refers to the asymptotic average, % «. The
top panel of Figure 13 shows o, and the bottom shows .
There are 12 contours. The lowest contour is 10.0 and is plotted
as a solid line in the bottom left and right of the panel. There
are 10 evenly space contours from 100.0 to 1000.0 in increments
of 100.0, and the largest contour at 1500.0 is plotted as a thick
solid line in the upper right, along with the second highest at
1000.0 with the same line type. The two contours at 100.0 and
200.0 are plotted as short and long dashes, respectively. The
rest of the contours are plotted as thin solid lines. Once again,
as in the case of o, for the chemical-kinetic system in Figure
12, there are two ridges in the plots, but the ridge in the rich
portion of the plot is considerably higher than the one in the
lean half. Although the one-dimensional manifolds near the
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saddle for the flame are attractive throughout the parameter space
shown in the top panel, they are considerably more attrac-
tive for rich flames.

As with the chemical-kinetic systems, the two-dimensional
manifolds are considerably less attractive than the one-
dimensional manifolds for the flames. In the bottom panel, the
attractiveness of the submanifolds does not change qualitatively
from the low-dimensional manifolds of chemical-kinetic sys-
tems, although they are less attractive.

V. Trajectories

A. Generating Flame Trajectories. Because the dynamical
system of eq 3.1d is unstable and trajectories cannot be
integrated in the usual manner, it is necessary to devise a
different procedure to follow trajectories on the stable manifold
of the saddlepoint. Equation 3.1d is written in the discrete form
as:

Ay, — F,Ax, =0 (5.1a)

An analogous version of these equations can be written in the
time domain for the chemical-kinetic case of eqs 2.1a and 2.1b:

Ay, — F AL, =0 (5.1b)

An orbit of the system is then found by finding the roots of a
nonlinear system of equations, in a manner similar to what is
done in the program Premix for the boundary value problem.’!
Such procedures are well-known in the literature, for example,
being used to find rare events.’’

For the flame trajectories generated here, a small spatial step
size is chosen initially for eq 5.1a, usually 107 to 107° cm,
and then is scaled geometrically with the spatial coordinate. This
means that the step sizes in eqs 5.1a and 5.1b at a given spatial
or temporal step are:

Ax, = () Axp, k=0—n (5.2a)
At,= (o) Aty k=0—n (5.2b)

The o’s in eqs 5.2a and 5.2b are usually between 1.05 and 1.25.
Generally 7 is between 100 and 150. In one case below (Fig-
ure 16), the calculation was run at a much finer scale to compare
with a premix result. The initial guess for the orbit is the
dynamics of a linear system based on the eigenvectors of the
Jacobian, which is described in section III.A. For the linear
system, the initial trajectories are written as displacements from
their values at the saddlepoint for the flame systems and the
equilibrium point for the chemical-kinetic systems. These
displacements are then propagated and transformed back to the
original coordinate system:

ng

W= ayR, " (5.3a)
m=1
0y x=0)=y,— y2 (5.3b)
A=y LpO¥i (5.3¢)
=1

where n; refers to the dimension of the stable manifold. Equation
5.3b describes the displacement of the initial conditions of the
trajectory from the saddlepoint or equilibrium point, and eq 5.3¢
describes the expansion of these displacements in terms of the
eigenvectors of the stable manifold. The discrete versions of
these trajectories are used as initial guesses into the Newton—Raphson
procedure used to solve eqs 5.1a and 5.1b. Equation 5.3a has
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Figure 14. Seven trajectories for a chemical-kinetic system were
generated by integrating them and are plotted with a solid line. These
are compared to trajectories generated by the Newton—Raphson
procedure outlined here, and these are plotted as a series of dots. These
estimates lie right on top of the integrated versions. For the
Newton—Raphson algorithm, Ay = 1.0 x 107 s and o, = 1.1 (eq
5.2b). There are 100 steps for each trajectory with a total time of 1.38 s
for each. The initial trajectory guesses for the Newton—Raphson [eqs
5.3] used the following y’s: —1.0, —600.0, —18 000, —36 000,
—40 000, —100 000.

[T

X" as the independent coordinate, which is used for the flame
dynamics. For the chemical-kinetic trajectories, “f’ is the
independent coordinate. The L’s and R’s refer to the left and
right eigenvectors of the Jacobian of eq 2.4, which is diago-
nalized in the usual manner:38

A=L"JR (5.4)
It was found that better convergence could be obtained with
starting guesses in eq 5.3a that had exponential factors, the y’s,
that are different than the eigenvalues, the A’s, so these are used
as adjustable parameters.

The step sizes and number of steps in eqs 5.2a and 5.2b are
chosen so that there are several points near the saddlepoint at
the end of the propagation of the initial linear system in eqs
5.3a—5.3c. Six initial conditions are fixed at t = 0 and x = 0,
because the stable manifold is six-dimensional. Some care is
necessary in applying the algorithm, and there are times when
the algorithm does not converge or convergence is poor, and
the parameters need to be adjusted.

This procedure is first tested on a chemical-kinetic system
using eq 5.1b. For this case, it is possible to integrate trajectories
using eqs 2.1a and 2.1b, because the system is stable. As noted
in eq 5.1b, the independent coordinate in this case is time, and
At takes the place of Ax in eq 5.1a. The time step sizes are
described in the caption to Figure 14 where the results of a test
are shown. The shortest chemical-kinetic time scales are not
included in these trajectories, with the initial time step set to
1073 s. This means that the fastest transients are not observed
in the trajectories. There are seven trajectories shown in Figure
14, and the orbits found from a Newton—Raphson search are
compared to the results of an integration of trajectories using
the program LSODE.* The solid lines in Figure 14 are the
results of the integration, and the dots result from the
Newton—Raphson procedure. These two sets of results lie on
top of each other.

B. Trajectory Examples. The procedure outlined in the
previous subsection is now applied to a flame trajectory in Figure
15. Once again, six initial conditions are set at the beginning
of the trajectory because the stable manifold is six-dimensional
based on the number of negative eigenvalues at the saddlepoint,
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Figure 15. Two views of the convergence process are shown in the
top two panels for the H,O and O mass fractions. The bottom panel
shows the initial and final temperature distribution as a function of the
log of the spatial coordinate. The value of Axp is 107° cm and ax =
1.15. There were 120 spatial steps used. The values of the y’s are —1.0,
—50.0, —200.0, —400.0, —400.0, and —400.0.
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Figure 16. The top panel describes the calculation of a steady flame
with the proper initial mass flux fractions. The middle panel compares
the trajectory calculation with the steady flame calculated with premix,
presented in Figure 2, and the bottom panel shows the asymptotic
temperature for the set of calculations. The value of Axyis 6 x 1073
cm and a, = 1.028, with 450 spatial steps. The values of the y’s are
—1.0, —50.0, —200.0, —400.0, —400.0, and —400.0.

as discussed above. The other 10 coordinates are allowed to
relax in the 16-dimensional system. The finite-difference in eq
5.1a is accomplished by three-point central differences for all
points except for the 10 coordinates at the beginning of the
trajectory that are allowed to relax. Forward three-point differ-
ences are used for these. The Ay;’s at the end of the trajectory
are calculated by backward three-point differences for all 16
coordinates.
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The shorter dashed line in the top panel of Figure 15 is the
initial orbit guess based on linear dynamics, the longer dashed
line with a maximum near 7 = 1000 K is the first iteration, the
dotted line is the third iteration, and the lighter line is the fourth
iteration. The fully converged result is shown with a thick solid
line. In the Yo projection in the middle panel, the line types
used for the top panel now show the initial orbit, and then the
second through fourth iterations, with the solid thick line once
again showing the converged trajectory. The bottom panel of
Figure 15 shows the temperature of the initial orbit guess, and
the solid line once again shows the fully converged result. The
temperature results are plotted versus log(x), the spatial coordinate.

The trajectory shown in Figure 15 is for a system with the
following constants (eqs 3.2a and 3.2b): do = 0.0063 and da,
= 0.88. The asymptotic enthalpy of the mixture is —1.755 x
108 ergs/g. Results for this system were presented in Figures 7
and 8. The values of the constants agree with those calculated
from the results of the Premix code to at least 4 significant
figures, but the asymptotic enthalpy from the premix code is
slightly different, —1.607 x 108 ergs/g. We view this difference
as within the errors of both calculations.

The calculation of the trajectory that matches the flame
generated by the premix code is described in Figure 16. The
initial values of the mass flux fractions of six species are fixed
in the same manner as they are in the Premix code. In this case,
the mole fraction of H, is set to 0.28, the mole fraction of O,
to 0.09, and the mole fraction of Ar is set to 0.63. The rest of
the mole fractions are set to zero. The mass fractions are then
defined from these, and the mass flux fractions at the burner (x
= 0) are set equal to the mass fractions (after the steady flame
is solved, all mass fractions and mole fractions are nonzero at
the burner, because of diffusion back toward the burner). The
values of the mass flux fractions fix the constants. The
temperature is set to 373.7 K.

After taking account of the constants and the fact that the
mass flux fractions sum to 1.0, there are six independent mass
flux fractions. Because the stable manifold is six-dimensional,
only five of these are fixed at x = 0, all of the G’s except Go.
These and the fixed temperature give the necessary six variables.
A value of the asymptotic enthalpy leads to a trajectory using
the algorithm outlined above. The mass flux fraction that is not
fixed, Go, relaxes to a final value that is nonzero for all values
of the asymptotic enthalpy except those that define the steady
flame with the correct values at the burner.

The top panel of Figure 16 shows a set of calculations of Go
for a set of systems with the two constants set to the values
described above, and a series of asymptotic enthalpies. This
curve crosses Go = 0 at H = —1.755 x 10® ergs/g, defining
the proper steady flame. The middle panel compares the
trajectory with the steady flame of Figure 2, and agreement is
good. There are some small discrepancies not evident from the
plot, but these are in species with small mass fractions, such as
O-atom and OH. The asymptotic temperatures differ by about
2 K out of 2050 K. The bottom panel of Figure 16 shows how
the asymptotic temperature varies with asymptotic enthalpy for
the flame trajectories.

Figure 17 shows a set of 394 flame trajectories generated at
the value of the asymptotic enthalpy established in Figure 16,
with the same constants used there. The initial conditions for
the trajectories were randomly sampled over a range of values
fixed by the saddlepoint. The four trace species, O, OH, HO,,
and H,O,, are chosen to have mass flux fraction values (G’s)
that lie between 0.0 and 10.0 times their values at the
saddlepoint. The mass flux fraction of H,O is chosen between
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Figure 17. A set of 394 trajectories generated with the algorithm of
section V.A. are shown here. These were generated from randomly
selected initial conditions with the ranges described in the text. The
top panel shows a two-dimensional projection, and the bottom panel
shows a three-dimensional projection. The value of Axp is 107% cm
and ax = 1.15. There were 135 spatial steps used. The values of the
y’s are —1.0, —50.0, —200.0, —400.0, —400.0, and —400.0.

zero and 1.2 times its value at the saddlepoint. The temperature
is chosen to be between 0.15 of its value at the saddle and the
actual value at the saddle, 7 = 2050 K. An initial sample of
449 trajectories led to 400 trajectories that converged. We expect
that most of the trajectories that did not converge lay off the
stable manifold, but it is difficult to state this with certainty in
all cases. In addition, there were six trajectories that did not
appear to be properly converged based on visual inspection,
and these were also not included in Figure 17.

The trajectories in the top panel of Figure 17 indicate that
there is an attractive one-dimensional manifold that starts near
1200 K and extends to the saddlepoint (see ref 5). This result
is consistent with results near the saddlepoint. It was noted in
section IV.A that the negative eigenvalues at the saddlepoint
for this system are —0.0061, —2.3, —19.0, —22.7, —27.1, and
—69.2, indicating that the one-dimensional manifold is highly
attractive near equilibrium. It is also consistent with those of
Figures 10 and 12 that show strong attractive properties for the
one-dimensional submanifold of the stable manifold near the
saddlepoint.

The bottom panel of Figure 17 gives a strong indication that
there is an attractive two-dimensional manifold. This again is
consistent with the dynamics near equilibrium where the
eigenvalue ratio (eq 4.1b) is —19.0/—2.3 = 8.3, indicating a
two-dimensional submanifold that is reasonably attractive near
equilibrium.

C. Analysis of Trajectories. The trajectories generated in
the previous section are now analyzed in more detail to ascertain
how they compare to adiabatic isobaric chemical-kinetic tra-
jectories and to make an assessment of the low-dimensional
submanifolds for the stable manifold. The nature of the
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Figure 18. A series of plots studying a subset of the trajectories in
Figure 17. The three quantities studied in the flame trajectories are
constant for adiabatic, isobaric chemical kinetics.

submanifolds will be studied in more detail in the subsequent
publication,” where the submanifolds will be explicitly generated
and will be used to compare the chemical kinetics with the
flames.

A set of calculations is presented in Figure 18 for a subset of
the trajectories of Figure 17, similar to the information presented
in Figure 3 for a steady flame. The top panel shows the enthalpy
of the mixture, and the next two panels show the chemical-
kinetic constants co and ca, defined in eqs 2.2a and 2.2b. The
ranges of the y-axes in the bottom two plots are much smaller
than that of the top panel, an indication that the enthalpy, which
is constant in the chemical-kinetic problem, varies to a much
greater extent in the flame than the other two quantities that
are constant for adiabatic, isobaric chemical kinetics. Another
important feature of these plots is what happens at the larger
spatial extents where a one-dimensional manifold was evident
in the top panel of Figure 17. There is a much smaller range of
enthalpies along the manifold and nearly constant values for
the chemical-kinetic constants.

The analysis of trajectories is continued in Figure 19, which
shows the difference between the mass flux fractions and mass
fractions along the same trajectories as in Figure 18. These plots
show two different species and indicate that the one-dimensional
manifold is characterized by a lack of transport. Equation 2.5¢
defined the mass flux fractions, the G’s, in terms of the mass
fractions, diffusion velocity, mass flow rate, and density. The
G’s and Y’s coincide when the diffusion velocity is small as
compared to the mass flow rate, which is what happens on the
one-dimensional manifold, suggesting the one-dimensional
manifold describes dynamics that is chemical-kinetic in nature,
rather than diffusive. These results suggest that there may not
be significant differences between one-dimensional manifolds
for the flame system and the analogous chemical-kinetic system,
and this will be confirmed in the following Article.’

VI. Conclusion

This Article has studied the spatial dynamics of one-
dimensional steady H»/O, premixed flames. The approach is
motivated by the results generated by the Chemkin code Premix



7782 J. Phys. Chem. A, Vol. 112, No. 34, 2008

0.02 T T T T

0.01 F .

Gp,o-Yuo

N

001 F O - !

-0.02 . . - .
600 900 1200 1500 1800 2100

0.001 T

Gil_Yii
>
=

-0.001 L Lo ' '
600 900 1200 1500 1800 2100

T(K)

Figure 19. These plots demonstrate that along the one-dimensional
manifold the G’s (mass flux fractions) and Y’s (mass fractions) are
approximately equal. The thick line shows the zero line for their
differences.

in Figures 4 and 6 that suggested there were low-dimensional
manifolds in the dynamics of these systems, a result consistent
with many years of studying the asymptotics of flames.

The spatial dynamics of steady flames was written as a
dynamical system as outlined a number of years ago by
Hirschfelder and Curtiss,> as well as Dixon-Lewis.* This
formulation allows a more direct comparison between the
temporal behavior of homogeneous chemical kinetics and the
spatial dynamics of flames when this comparison is made in
phase space where the difference in the independent variables
(time vs space) is not important. It was shown that there are
saddlepoints in the flame systems that correspond to the
equilibrium points of adiabatic isobaric chemical kinetics, and
although these flame systems are unstable, steady flames are
trajectories on the stable manifolds of the saddlepoints. An
important numerical result is that in almost all cases studied
here, the dimension of the stable manifold of the flames matched
the dimension of the corresponding adiabatic, isobaric chemical
kinetics.

The eigenvalues of the Jacobian at the saddlepoint have been
studied in detail (Figures 10 and 13), and it was shown that
near the saddlepoint there is a separation of spatial scales on
the stable manifold that leads to attractive submanifolds. The
attractive submanifolds are equivalent to the low-dimensional
manifolds of a typical adiabatic isobaric chemical-kinetic system,
leading to the notion that standard techniques of finding low-
dimensional manifolds can be utilized for the flames in the
extended phase space studied here and in ref 5 and consistent
with the results of ref 20.

To study the dynamics of the flame systems, it was necessary
to devise methods for generating trajectories, because direct
numerical integration cannot be accomplished due to the
unstable nature of the systems. The methodology was laid out
and several cases were studied in section V, including the
reproduction of the flame generated previously using the Premix
code in Figure 2. The behavior of ensembles of these trajectories
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gave strong evidence in Figure 17 that there are attractive one-
and two-dimensional submanifolds of the stable manifold away
from the saddlepoint, consistent with the local results of Figures
10-13. Figures 18 and 19 suggest that the relaxation that occurs
along the one-dimensional manifold depends largely on chemical
kinetics.

This Article lays the groundwork for what follows in the
accompanying Article,” where low-dimensional manifolds are
generated and there is a detailed comparison of the manifolds
for chemical-kinetic systems and the flame systems. There will
also be a comparison between two well-used methods for
generating the manifolds. Because the methodology used here
involves the study of an initial value problem, rather than a
boundary value problem (Figures 7 and 8), this will allow a
better comparison of the chemical-kinetic and flame manifolds.
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